Module ethik
  Installation
Via PyPI
>>> pip install ethik
Via GitHub for the latest development version
>>> pip install git+<https://github.com/XAI-ANITI/ethik.git>
>>> # Or through SSH:
>>> pip install git+ssh://git@github.com/XAI-ANITI/ethik.git
Development installation
>>> git clone <https://github.com/MaxHalford/ethik>
>>> cd ethik
>>> make install_dev
Expand source code
"""
## Installation
<div style="display: flex; align-items: center; margin-bottom: 20px;">
    <i class="material-icons" style="margin-right: 10px; color: red;">warning</i> Python 3.6 or above is required
</div>
**Via [PyPI](https://pypi.org/project/ethik/)**
```shell
>>> pip install ethik
```
**Via GitHub for the latest development version**
```shell
>>> pip install git+https://github.com/XAI-ANITI/ethik.git
>>> # Or through SSH:
>>> pip install git+ssh://git@github.com/XAI-ANITI/ethik.git
```
**Development installation**
```shell
>>> git clone https://github.com/MaxHalford/ethik
>>> cd ethik
>>> make install_dev
```
"""
from . import datasets
from .__version__ import __version__
from .classification_explainer import ClassificationExplainer
from .regression_explainer import RegressionExplainer
from .image_classification_explainer import ImageClassificationExplainer
from .utils import extract_category
__all__ = [
    "__version__",
    "datasets",
    "RegressionExplainer",
    "ClassificationExplainer",
    "ImageClassificationExplainer",
    "extract_category",
]Sub-modules
Functions
- def extract_category(X, cat)
- 
  
  
  
    
      Expand source codedef extract_category(X, cat): return pd.get_dummies(X)[cat].rename(f"{X.name}={cat}")
Classes
- class ClassificationExplainer (alpha=0.05, n_taus=41, n_samples=1, sample_frac=0.8, conf_level=0.05, max_iterations=15, tol=0.0001, n_jobs=1, memoize=False, verbose=True)
- 
  
  Explains the influence of features on model predictions and performance. Parameters- alpha:- float
- A floatbetween0and0.5which indicates by how close theCacheExplainershould look at extreme values of a distribution. The closer to zero, the more so extreme values will be accounted for. The default is0.05which means that all values beyond the 5th and 95th quantiles are ignored.
- n_taus:- int
- The number of τ values to consider. The results will be more fine-grained the
higher this value is. However the computation time increases linearly with n_taus. The default is41and corresponds to each τ being separated by it's neighbors by0.05.
- n_samples:- int
- The number of samples to use for the confidence interval.
If 1, the default, no confidence interval is computed.
- sample_frac:- float
- The proportion of lines in the dataset sampled to
generate the samples for the confidence interval. If n_samplesis1, no confidence interval is computed and the whole dataset is used. Default is0.8.
- conf_level:- float
- A floatbetween0and0.5which indicates the quantile used for the confidence interval. Default is0.05, which means that the confidence interval contains the data between the 5th and 95th quantiles.
- max_iterations:- int
- The maximum number of iterations used when applying the Newton step
of the optimization procedure. Default is 5.
- tol:- float
- The bottom threshold for the gradient of the optimization
procedure. When reached, the procedure stops. Otherwise, a warning
is raised about the fact that the optimization did not converge.
Default is 1e-4.
- n_jobs:- int
- The number of jobs to use for parallel computations. See
joblib.Parallel(). Default is-1.
- memoize:- bool
- Indicates whether or not memoization should be used or not. If True, then intermediate results will be stored in order to avoid recomputing results that can be reused by successively called methods. For example, if you callplot_influencefollowed byplot_influence_rankingandmemoizeisTrue, then the intermediate results required byplot_influencewill be reused forplot_influence_ranking. Memoization is turned off by default because it can lead to unexpected behavior depending on your usage.
- verbose:- bool
- Whether or not to show progress bars during
computations. Default is True.
 Expand source codeclass ClassificationExplainer(CacheExplainer): def plot_influence( self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None ): """Plot the influence for the features in `X_test`. See `ethik.cache_explainer.CacheExplainer.plot_influence()`. """ if yrange is None: yrange = [0, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_influence( X_test=X_test, y_pred=y_pred.iloc[:, 0], colors=colors, yrange=yrange, size=size, constraints=constraints, ) if colors is None: features = X_test.columns # Skip the lightest color as it is too light scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:] colors = {feat: scale[i] for i, feat in enumerate(features)} labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_influence( X_test=X_test, y_pred=y_pred[label], colors=colors, yrange=yrange, constraints=constraints, ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=f"Average {label}")}) for trace in plot["data"]: trace["showlegend"] = ilabel == 0 and trace["showlegend"] trace["legendgroup"] = trace["name"] fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( nticks=5, showline=True, showgrid=True, zeroline=False, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( range=yrange, showline=True, showgrid=True, linecolor="black", gridcolor="#eee", ) fig.update_layout( { f"xaxis{len(labels)}": dict( title="tau" if len(X_test.columns) > 1 else f"Average {X_test.columns[0]}" ) } ) set_fig_size(fig, size) return fig def plot_influence_2d( self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None ): """Plot the combined influence for the features in `X_test`. See `ethik.cache_explainer.CacheExplainer.plot_influence_2d()`. """ if z_range is None: z_range = [0, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_influence_2d( X_test=X_test, y_pred=y_pred, z_range=z_range, colorscale=colorscale, size=size, constraints=constraints, ) labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_influence_2d( X_test=X_test, y_pred=y_pred[label], z_range=z_range, colorscale=colorscale, size=size, constraints=constraints, ) ) fig = make_subplots( rows=len(labels), cols=1, shared_xaxes=True, subplot_titles=[p["data"][0]["colorbar"]["title"].text for p in plots], ) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=plot.layout.yaxis.title)}) heatmap, ds_mean = plot["data"] heatmap["showscale"] = ilabel == 0 heatmap["colorbar"]["title"] = "" heatmap["hoverinfo"] = "x+y+z" fig.add_trace(heatmap, row=ilabel + 1, col=1) fig.add_trace(ds_mean, row=ilabel + 1, col=1) fig.update_xaxes( showline=True, showgrid=True, zeroline=False, mirror=True, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( showline=True, showgrid=True, mirror=True, linecolor="black", gridcolor="#eee", ) fig.update_layout( { f"xaxis{len(labels)}": dict(title=plots[0].layout.xaxis.title), "title": plots[0].layout.title, } ) set_fig_size(fig, size) return fig def plot_distributions( self, feature_values, y_pred=None, bins=None, show_hist=False, show_curve=True, targets=None, colors=None, dataset_color="black", size=None, ): """Plot the stressed distribution of `feature_values` or `y_pred` if specified for each mean of `feature_values` in `targets`. See `ethik.base_explainer.BaseExplainer.plot_distributions()`. """ if y_pred is None: return super().plot_distributions( feature_values=feature_values, bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, size=size, ) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_distributions( feature_values=feature_values, y_pred=y_pred.iloc[:, 0], bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, size=size, ) labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_distributions( feature_values=feature_values, y_pred=y_pred[label], bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout( { f"xaxis{ilabel+1}": dict(title=label), f"yaxis{ilabel+1}": dict(title=f"Probability density"), } ) for itrace, trace in enumerate(plot["data"]): trace["legendgroup"] = itrace fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( showline=True, showgrid=True, zeroline=False, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( showline=True, showgrid=True, linecolor="black", gridcolor="#eee" ) set_fig_size(fig, size) return fig def plot_influence_comparison( self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None ): """Plot the influence of features in `X_test` on `y_pred` for the individual `compared` compared to `reference`. Basically, we look at how the model would behave if the average individual were `compared` and take the difference with what the output would be if the average were `reference`. See `ethik.base_explainer.BaseExplainer.plot_influence_comparison()`. """ if yrange is None: yrange = [-1, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) features = X_test.columns labels = y_pred.columns if len(labels) == 1: return super().plot_influence_comparison( X_test, y_pred.iloc[:, 0], reference, compared, colors=colors, yrange=yrange, size=size, ) if colors is None: # Skip the lightest color as it is too light scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:] colors = {feat: scale[i] for i, feat in enumerate(features)} plots = [] for label in labels: plots.append( super().plot_influence_comparison( X_test, y_pred[label], reference, compared, colors=colors ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) title = None shapes = [] for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=label)}) for trace in plot["data"]: shapes.append( go.layout.Shape( type="line", x0=0, y0=-0.5, x1=0, y1=len(features) - 0.5, yref=f"y{ilabel+1}", line=dict(color="black", width=1), ) ) fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( range=yrange, showline=True, linecolor="black", linewidth=1, zeroline=False, showgrid=True, gridcolor="#eee", side="top", fixedrange=True, showticklabels=True, ) fig.update_layout( showlegend=False, xaxis1=dict(title=plots[0].layout.xaxis.title), shapes=shapes, ) set_fig_size( fig, size, width=500, height=100 + 60 * len(features) + 30 * len(labels) ) return figAncestorsMethods- def plot_distributions(self, feature_values, y_pred=None, bins=None, show_hist=False, show_curve=True, targets=None, colors=None, dataset_color='black', size=None)
- 
  
  Plot the stressed distribution of feature_valuesory_predif specified for each mean offeature_valuesintargets.Expand source codedef plot_distributions( self, feature_values, y_pred=None, bins=None, show_hist=False, show_curve=True, targets=None, colors=None, dataset_color="black", size=None, ): """Plot the stressed distribution of `feature_values` or `y_pred` if specified for each mean of `feature_values` in `targets`. See `ethik.base_explainer.BaseExplainer.plot_distributions()`. """ if y_pred is None: return super().plot_distributions( feature_values=feature_values, bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, size=size, ) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_distributions( feature_values=feature_values, y_pred=y_pred.iloc[:, 0], bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, size=size, ) labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_distributions( feature_values=feature_values, y_pred=y_pred[label], bins=bins, show_hist=show_hist, show_curve=show_curve, targets=targets, colors=colors, dataset_color=dataset_color, ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout( { f"xaxis{ilabel+1}": dict(title=label), f"yaxis{ilabel+1}": dict(title=f"Probability density"), } ) for itrace, trace in enumerate(plot["data"]): trace["legendgroup"] = itrace fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( showline=True, showgrid=True, zeroline=False, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( showline=True, showgrid=True, linecolor="black", gridcolor="#eee" ) set_fig_size(fig, size) return fig
- def plot_influence(self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None)
- 
  
  Plot the influence for the features in X_test.Expand source codedef plot_influence( self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None ): """Plot the influence for the features in `X_test`. See `ethik.cache_explainer.CacheExplainer.plot_influence()`. """ if yrange is None: yrange = [0, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_influence( X_test=X_test, y_pred=y_pred.iloc[:, 0], colors=colors, yrange=yrange, size=size, constraints=constraints, ) if colors is None: features = X_test.columns # Skip the lightest color as it is too light scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:] colors = {feat: scale[i] for i, feat in enumerate(features)} labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_influence( X_test=X_test, y_pred=y_pred[label], colors=colors, yrange=yrange, constraints=constraints, ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=f"Average {label}")}) for trace in plot["data"]: trace["showlegend"] = ilabel == 0 and trace["showlegend"] trace["legendgroup"] = trace["name"] fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( nticks=5, showline=True, showgrid=True, zeroline=False, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( range=yrange, showline=True, showgrid=True, linecolor="black", gridcolor="#eee", ) fig.update_layout( { f"xaxis{len(labels)}": dict( title="tau" if len(X_test.columns) > 1 else f"Average {X_test.columns[0]}" ) } ) set_fig_size(fig, size) return fig
- def plot_influence_2d(self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None)
- 
  
  Plot the combined influence for the features in X_test.Expand source codedef plot_influence_2d( self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None ): """Plot the combined influence for the features in `X_test`. See `ethik.cache_explainer.CacheExplainer.plot_influence_2d()`. """ if z_range is None: z_range = [0, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) if len(y_pred.columns) == 1: return super().plot_influence_2d( X_test=X_test, y_pred=y_pred, z_range=z_range, colorscale=colorscale, size=size, constraints=constraints, ) labels = y_pred.columns plots = [] for label in labels: plots.append( super().plot_influence_2d( X_test=X_test, y_pred=y_pred[label], z_range=z_range, colorscale=colorscale, size=size, constraints=constraints, ) ) fig = make_subplots( rows=len(labels), cols=1, shared_xaxes=True, subplot_titles=[p["data"][0]["colorbar"]["title"].text for p in plots], ) for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=plot.layout.yaxis.title)}) heatmap, ds_mean = plot["data"] heatmap["showscale"] = ilabel == 0 heatmap["colorbar"]["title"] = "" heatmap["hoverinfo"] = "x+y+z" fig.add_trace(heatmap, row=ilabel + 1, col=1) fig.add_trace(ds_mean, row=ilabel + 1, col=1) fig.update_xaxes( showline=True, showgrid=True, zeroline=False, mirror=True, linecolor="black", gridcolor="#eee", ) fig.update_yaxes( showline=True, showgrid=True, mirror=True, linecolor="black", gridcolor="#eee", ) fig.update_layout( { f"xaxis{len(labels)}": dict(title=plots[0].layout.xaxis.title), "title": plots[0].layout.title, } ) set_fig_size(fig, size) return fig
- def plot_influence_comparison(self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None)
- 
  
  Plot the influence of features in X_testony_predfor the individualcomparedcompared toreference. Basically, we look at how the model would behave if the average individual werecomparedand take the difference with what the output would be if the average werereference.Expand source codedef plot_influence_comparison( self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None ): """Plot the influence of features in `X_test` on `y_pred` for the individual `compared` compared to `reference`. Basically, we look at how the model would behave if the average individual were `compared` and take the difference with what the output would be if the average were `reference`. See `ethik.base_explainer.BaseExplainer.plot_influence_comparison()`. """ if yrange is None: yrange = [-1, 1] X_test = pd.DataFrame(to_pandas(X_test)) y_pred = pd.DataFrame(to_pandas(y_pred)) features = X_test.columns labels = y_pred.columns if len(labels) == 1: return super().plot_influence_comparison( X_test, y_pred.iloc[:, 0], reference, compared, colors=colors, yrange=yrange, size=size, ) if colors is None: # Skip the lightest color as it is too light scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:] colors = {feat: scale[i] for i, feat in enumerate(features)} plots = [] for label in labels: plots.append( super().plot_influence_comparison( X_test, y_pred[label], reference, compared, colors=colors ) ) fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True) title = None shapes = [] for ilabel, (label, plot) in enumerate(zip(labels, plots)): fig.update_layout({f"yaxis{ilabel+1}": dict(title=label)}) for trace in plot["data"]: shapes.append( go.layout.Shape( type="line", x0=0, y0=-0.5, x1=0, y1=len(features) - 0.5, yref=f"y{ilabel+1}", line=dict(color="black", width=1), ) ) fig.add_trace(trace, row=ilabel + 1, col=1) fig.update_xaxes( range=yrange, showline=True, linecolor="black", linewidth=1, zeroline=False, showgrid=True, gridcolor="#eee", side="top", fixedrange=True, showticklabels=True, ) fig.update_layout( showlegend=False, xaxis1=dict(title=plots[0].layout.xaxis.title), shapes=shapes, ) set_fig_size( fig, size, width=500, height=100 + 60 * len(features) + 30 * len(labels) ) return fig
 Inherited members- CacheExplainer:- CAT_COL_SEP
- compare_influence
- compare_performance
- compute_distributions
- compute_weights
- explain_influence
- explain_performance
- get_metric_name
- plot_cumulative_weights
- plot_influence_ranking
- plot_performance
- plot_performance_2d
- plot_performance_comparison
- plot_performance_ranking
- plot_weight_distribution
- rank_by_influence
- rank_by_performance
 
 
- class ImageClassificationExplainer (alpha=0.05, max_iterations=10, tol=0.0001, n_jobs=-1, memoize=True, verbose=True)
- 
  
  An explainer specially suited for image classification. This has exactly the same API as Explainer, but expects to be provided with an array of images instead of a tabular dataset.TODO: add a note about n_taus being 2 Parameters- alpha:- float
- A floatbetween0and0.5which indicates by how close theExplainershould look at extreme values of a distribution. The closer to zero, the more so extreme values will be accounted for. The default is0.05which means that all values beyond the 5th and 95th quantiles are ignored.
- max_iterations:- int
- The number of iterations used when applying the Newton step
of the optimization procedure. Default is 5.
- tol:- float
- The bottom threshold for the gradient of the optimization
procedure. When reached, the procedure stops. Otherwise, a warning
is raised about the fact that the optimization did not converge.
Default is 1e-4.
- n_jobs:- int
- The number of jobs to use for parallel computations. See
joblib.Parallel(). Default is-1.
- memoize:- bool
- Indicates whether or not memoization should be used or not. If True, then intermediate results will be stored in order to avoid recomputing results that can be reused by successively called methods. For example, if you callplot_influencefollowed byplot_influence_rankingandmemoizeisTrue, then the intermediate results required byplot_influencewill be reused forplot_influence_ranking. Memoization is turned on by default because computations are time-consuming for images.
- verbose:- bool
- Whether or not to show progress bars during
computations. Default is True.
 Expand source codeclass ImageClassificationExplainer(CacheExplainer): """An explainer specially suited for image classification. This has exactly the same API as `Explainer`, but expects to be provided with an array of images instead of a tabular dataset. TODO: add a note about n_taus being 2 Parameters: alpha (float): A `float` between `0` and `0.5` which indicates by how close the `Explainer` should look at extreme values of a distribution. The closer to zero, the more so extreme values will be accounted for. The default is `0.05` which means that all values beyond the 5th and 95th quantiles are ignored. max_iterations (int): The number of iterations used when applying the Newton step of the optimization procedure. Default is `5`. tol (float): The bottom threshold for the gradient of the optimization procedure. When reached, the procedure stops. Otherwise, a warning is raised about the fact that the optimization did not converge. Default is `1e-4`. n_jobs (int): The number of jobs to use for parallel computations. See `joblib.Parallel()`. Default is `-1`. memoize (bool): Indicates whether or not memoization should be used or not. If `True`, then intermediate results will be stored in order to avoid recomputing results that can be reused by successively called methods. For example, if you call `plot_influence` followed by `plot_influence_ranking` and `memoize` is `True`, then the intermediate results required by `plot_influence` will be reused for `plot_influence_ranking`. Memoization is turned on by default because computations are time-consuming for images. verbose (bool): Whether or not to show progress bars during computations. Default is `True`. """ def __init__( self, alpha=0.05, max_iterations=10, tol=1e-4, n_jobs=-1, memoize=True, verbose=True, ): super().__init__( alpha=alpha, n_taus=2, max_iterations=max_iterations, tol=tol, n_jobs=n_jobs, memoize=memoize, verbose=verbose, ) def _set_image_shape(self, images): self.img_shape = images[0].shape if self.img_shape[-1] == 1: self.img_shape = self.img_shape[:-1] def explain_influence(self, X_test, y_pred): """Compute the influence of the model for the features in `X_test`. Args: X_test (np.array): An array of images, i.e. a 3d numpy array of dimension `(n_images, n_rows, n_cols)`. y_pred (pd.DataFrame or pd.Series): The model predictions for the samples in `X_test`. For binary classification and regression, `pd.Series` is expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or `0/1` (for a one-hot-encoded output). Returns: pd.DataFrame: See `ethik.explainer.Explainer.explain_influence()`. """ self._set_image_shape(images=X_test) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConstantWarning) return super().explain_influence( X_test=images_to_dataframe(X_test), y_pred=y_pred ) def explain_performance(self, X_test, y_test, y_pred, metric): """Compute the change in model's performance for the features in `X_test`. Args: X_test (np.array): An array of images, i.e. a 3d numpy array of dimension `(n_images, n_rows, n_cols)`. y_test (pd.DataFrame or pd.Series): The true values for the samples in `X_test`. For binary classification and regression, a `pd.Series` is expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or `0/1` (for a one-hot-encoded output). y_pred (pd.DataFrame or pd.Series): The model predictions for the samples in `X_test`. The format is the same as `y_test`. metric (callable): A scikit-learn-like metric `f(y_true, y_pred, sample_weight=None)`. The metric must be able to handle the `y` data. For instance, for `sklearn.metrics.accuracy_score()`, "the set of labels predicted for a sample must exactly match the corresponding set of labels in `y_true`". Returns: pd.DataFrame: See `ethik.explainer.Explainer.explain_performance()`. """ self._set_image_shape(images=X_test) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConstantWarning) return super().explain_performance( X_test=images_to_dataframe(X_test), y_test=y_test, y_pred=y_pred, metric=metric, ) def _get_fig_size(self, cell_width, n_rows, n_cols): if cell_width is None: cell_width = 800 / n_cols im_height, im_width = self.img_shape ratio = im_height / im_width cell_height = ratio * cell_width return n_cols * cell_width, n_rows * cell_height def plot_influence(self, X_test, y_pred, n_cols=3, cell_width=None): """Plot the influence of the model for the features in `X_test`. Args: X_test (pd.DataFrame or np.array): See `ImageClassificationExplainer.explain_influence()`. y_pred (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_influence()`. n_cols (int): The number of classes to render per row. Default is `3`. cell_width (int, optional): The width of each cell in pixels. Returns: plotly.graph_objs.Figure: A Plotly figure. It shows automatically in notebook cells but you can also call the `.show()` method to plot multiple charts in the same cell. """ influences = self.explain_influence(X_test=X_test, y_pred=y_pred) z_values = {} for label, group in influences.groupby("label"): diffs = ( group.query("tau == 1")["influence"] - group.query("tau == -1")["influence"].values ) diffs = diffs.to_numpy().reshape(self.img_shape) z_values[label] = diffs n_plots = len(z_values) labels = sorted(z_values) n_rows = n_plots // n_cols + 1 fig = make_subplots( rows=n_rows, cols=n_cols, subplot_titles=list(map(str, labels)), shared_xaxes="all", shared_yaxes="all", horizontal_spacing=0.2 / n_cols, vertical_spacing=0.2 / n_rows, ) # We want all the heatmaps to share the same scale zmin = min(np.min(z) for z in z_values.values()) zmax = max(np.max(z) for z in z_values.values()) # We want to make sure that 0 is at the center of the scale zmin, zmax = min(zmin, -zmax), max(zmax, -zmin) im_height, im_width = self.img_shape colorbar_width = 30 colorbar_ticks_width = 27 colorbar_x = 1.02 for i, label in enumerate(labels): fig.add_trace( go.Heatmap( z=z_values[label][::-1], x=list(range(im_width)), y=list(range(im_height)), zmin=zmin, zmax=zmax, colorscale="RdBu", zsmooth="best", showscale=(i == 0), name=label, hoverinfo="x+y+z", reversescale=True, colorbar=dict( thicknessmode="pixels", thickness=colorbar_width, xpad=0, x=colorbar_x, ), ), row=i // n_cols + 1, col=i % n_cols + 1, ) for i in range(n_plots): fig.update_layout( { f"xaxis{i+1}": dict(visible=False), f"yaxis{i+1}": dict(scaleanchor=f"x{i+1}", visible=False), } ) width, height = self._get_fig_size(cell_width, n_rows, n_cols) width += (colorbar_x - 1) * width + colorbar_width + colorbar_ticks_width fig.update_layout( margin=dict(t=20, l=20, b=20, r=20), width=width, height=height, autosize=False, ) return fig def plot_performance(self, X_test, y_test, y_pred, metric): """Plot the performance of the model for the features in `X_test`. Args: X_test (pd.DataFrame or np.array): See `ImageClassificationExplainer.explain_performance()`. y_test (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_performance()`. y_pred (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_performance()`. metric (callable): See `ImageClassificationExplainer.explain_performance()`. Returns: plotly.graph_objs.Figure: A Plotly figure. It shows automatically in notebook cells but you can also call the `.show()` method to plot multiple charts in the same cell. TODO: explain what is represented on the image. """ perf = self.explain_performance( X_test=X_test, y_test=y_test, y_pred=y_pred, metric=metric ) metric_name = self.get_metric_name(metric) mask = perf["label"] == perf["label"].iloc[0] diffs = ( perf[mask].query(f"tau == 1")[metric_name].to_numpy() - perf[mask].query(f"tau == -1")[metric_name].to_numpy() ) diffs = diffs.reshape(self.img_shape) # We want to make sure that 0 is at the center of the scale zmin, zmax = diffs.min(), diffs.max() zmin, zmax = min(zmin, -zmax), max(zmax, -zmin) height, width = self.img_shape fig = go.Figure() fig.add_trace( go.Heatmap( z=diffs[::-1], x=list(range(width)), y=list(range(height)), zmin=zmin, zmax=zmax, colorscale="RdBu", zsmooth="best", showscale=True, hoverinfo="x+y+z", reversescale=True, ) ) fig_width = 500 fig.update_layout( margin=dict(t=20, l=20, b=20), width=fig_width, height=fig_width * height / width, xaxis=dict(visible=False), yaxis=dict(visible=False, scaleanchor="x", scaleratio=height / width), ) return figAncestorsMethods- def explain_influence(self, X_test, y_pred)
- 
  
  Compute the influence of the model for the features in X_test.Args- X_test:- np.array
- An array of images, i.e. a 3d numpy array of
dimension (n_images, n_rows, n_cols).
- y_pred:- pd.DataFrameor- pd.Series
- The model predictions
for the samples in X_test. For binary classification and regression,pd.Seriesis expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or0/1(for a one-hot-encoded output).
 Returns- pd.DataFrame:
- See ethik.explainer.Explainer.explain_influence().
 Expand source codedef explain_influence(self, X_test, y_pred): """Compute the influence of the model for the features in `X_test`. Args: X_test (np.array): An array of images, i.e. a 3d numpy array of dimension `(n_images, n_rows, n_cols)`. y_pred (pd.DataFrame or pd.Series): The model predictions for the samples in `X_test`. For binary classification and regression, `pd.Series` is expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or `0/1` (for a one-hot-encoded output). Returns: pd.DataFrame: See `ethik.explainer.Explainer.explain_influence()`. """ self._set_image_shape(images=X_test) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConstantWarning) return super().explain_influence( X_test=images_to_dataframe(X_test), y_pred=y_pred )
- def explain_performance(self, X_test, y_test, y_pred, metric)
- 
  
  Compute the change in model's performance for the features in X_test.Args- X_test:- np.array
- An array of images, i.e. a 3d numpy array of
dimension (n_images, n_rows, n_cols).
- y_test:- pd.DataFrameor- pd.Series
- The true values
for the samples in X_test. For binary classification and regression, apd.Seriesis expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or0/1(for a one-hot-encoded output).
- y_pred:- pd.DataFrameor- pd.Series
- The model predictions
for the samples in X_test. The format is the same asy_test.
- metric:- callable
- A scikit-learn-like metric
f(y_true, y_pred, sample_weight=None). The metric must be able to handle theydata. For instance, forsklearn.metrics.accuracy_score(), "the set of labels predicted for a sample must exactly match the corresponding set of labels iny_true".
 Returns- pd.DataFrame:
- See ethik.explainer.Explainer.explain_performance().
 Expand source codedef explain_performance(self, X_test, y_test, y_pred, metric): """Compute the change in model's performance for the features in `X_test`. Args: X_test (np.array): An array of images, i.e. a 3d numpy array of dimension `(n_images, n_rows, n_cols)`. y_test (pd.DataFrame or pd.Series): The true values for the samples in `X_test`. For binary classification and regression, a `pd.Series` is expected. For multi-label classification, a pandas dataframe with one column per label is expected. The values can either be probabilities or `0/1` (for a one-hot-encoded output). y_pred (pd.DataFrame or pd.Series): The model predictions for the samples in `X_test`. The format is the same as `y_test`. metric (callable): A scikit-learn-like metric `f(y_true, y_pred, sample_weight=None)`. The metric must be able to handle the `y` data. For instance, for `sklearn.metrics.accuracy_score()`, "the set of labels predicted for a sample must exactly match the corresponding set of labels in `y_true`". Returns: pd.DataFrame: See `ethik.explainer.Explainer.explain_performance()`. """ self._set_image_shape(images=X_test) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=ConstantWarning) return super().explain_performance( X_test=images_to_dataframe(X_test), y_test=y_test, y_pred=y_pred, metric=metric, )
- def plot_influence(self, X_test, y_pred, n_cols=3, cell_width=None)
- 
  
  Plot the influence of the model for the features in X_test.Args- X_test:- pd.DataFrameor- np.array
- See ImageClassificationExplainer.explain_influence().
- y_pred:- pd.DataFrameor- pd.Series
- See ImageClassificationExplainer.explain_influence().
- n_cols:- int
- The number of classes to render per row. Default is 3.
- cell_width:- int, optional
- The width of each cell in pixels.
 Returns- plotly.graph_objs.Figure:
- A Plotly figure. It shows automatically in notebook cells but you
can also call the .show()method to plot multiple charts in the same cell.
 Expand source codedef plot_influence(self, X_test, y_pred, n_cols=3, cell_width=None): """Plot the influence of the model for the features in `X_test`. Args: X_test (pd.DataFrame or np.array): See `ImageClassificationExplainer.explain_influence()`. y_pred (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_influence()`. n_cols (int): The number of classes to render per row. Default is `3`. cell_width (int, optional): The width of each cell in pixels. Returns: plotly.graph_objs.Figure: A Plotly figure. It shows automatically in notebook cells but you can also call the `.show()` method to plot multiple charts in the same cell. """ influences = self.explain_influence(X_test=X_test, y_pred=y_pred) z_values = {} for label, group in influences.groupby("label"): diffs = ( group.query("tau == 1")["influence"] - group.query("tau == -1")["influence"].values ) diffs = diffs.to_numpy().reshape(self.img_shape) z_values[label] = diffs n_plots = len(z_values) labels = sorted(z_values) n_rows = n_plots // n_cols + 1 fig = make_subplots( rows=n_rows, cols=n_cols, subplot_titles=list(map(str, labels)), shared_xaxes="all", shared_yaxes="all", horizontal_spacing=0.2 / n_cols, vertical_spacing=0.2 / n_rows, ) # We want all the heatmaps to share the same scale zmin = min(np.min(z) for z in z_values.values()) zmax = max(np.max(z) for z in z_values.values()) # We want to make sure that 0 is at the center of the scale zmin, zmax = min(zmin, -zmax), max(zmax, -zmin) im_height, im_width = self.img_shape colorbar_width = 30 colorbar_ticks_width = 27 colorbar_x = 1.02 for i, label in enumerate(labels): fig.add_trace( go.Heatmap( z=z_values[label][::-1], x=list(range(im_width)), y=list(range(im_height)), zmin=zmin, zmax=zmax, colorscale="RdBu", zsmooth="best", showscale=(i == 0), name=label, hoverinfo="x+y+z", reversescale=True, colorbar=dict( thicknessmode="pixels", thickness=colorbar_width, xpad=0, x=colorbar_x, ), ), row=i // n_cols + 1, col=i % n_cols + 1, ) for i in range(n_plots): fig.update_layout( { f"xaxis{i+1}": dict(visible=False), f"yaxis{i+1}": dict(scaleanchor=f"x{i+1}", visible=False), } ) width, height = self._get_fig_size(cell_width, n_rows, n_cols) width += (colorbar_x - 1) * width + colorbar_width + colorbar_ticks_width fig.update_layout( margin=dict(t=20, l=20, b=20, r=20), width=width, height=height, autosize=False, ) return fig
- def plot_performance(self, X_test, y_test, y_pred, metric)
- 
  
  Plot the performance of the model for the features in X_test.Args- X_test:- pd.DataFrameor- np.array
- See ImageClassificationExplainer.explain_performance().
- y_test:- pd.DataFrameor- pd.Series
- See ImageClassificationExplainer.explain_performance().
- y_pred:- pd.DataFrameor- pd.Series
- See ImageClassificationExplainer.explain_performance().
- metric:- callable
- See ImageClassificationExplainer.explain_performance().
 Returns- plotly.graph_objs.Figure:
- 
A Plotly figure. It shows automatically in notebook cells but you can also call the .show()method to plot multiple charts in the same cell.TODO: explain what is represented on the image. 
 Expand source codedef plot_performance(self, X_test, y_test, y_pred, metric): """Plot the performance of the model for the features in `X_test`. Args: X_test (pd.DataFrame or np.array): See `ImageClassificationExplainer.explain_performance()`. y_test (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_performance()`. y_pred (pd.DataFrame or pd.Series): See `ImageClassificationExplainer.explain_performance()`. metric (callable): See `ImageClassificationExplainer.explain_performance()`. Returns: plotly.graph_objs.Figure: A Plotly figure. It shows automatically in notebook cells but you can also call the `.show()` method to plot multiple charts in the same cell. TODO: explain what is represented on the image. """ perf = self.explain_performance( X_test=X_test, y_test=y_test, y_pred=y_pred, metric=metric ) metric_name = self.get_metric_name(metric) mask = perf["label"] == perf["label"].iloc[0] diffs = ( perf[mask].query(f"tau == 1")[metric_name].to_numpy() - perf[mask].query(f"tau == -1")[metric_name].to_numpy() ) diffs = diffs.reshape(self.img_shape) # We want to make sure that 0 is at the center of the scale zmin, zmax = diffs.min(), diffs.max() zmin, zmax = min(zmin, -zmax), max(zmax, -zmin) height, width = self.img_shape fig = go.Figure() fig.add_trace( go.Heatmap( z=diffs[::-1], x=list(range(width)), y=list(range(height)), zmin=zmin, zmax=zmax, colorscale="RdBu", zsmooth="best", showscale=True, hoverinfo="x+y+z", reversescale=True, ) ) fig_width = 500 fig.update_layout( margin=dict(t=20, l=20, b=20), width=fig_width, height=fig_width * height / width, xaxis=dict(visible=False), yaxis=dict(visible=False, scaleanchor="x", scaleratio=height / width), ) return fig
 Inherited members- CacheExplainer:- CAT_COL_SEP
- compare_influence
- compare_performance
- compute_distributions
- compute_weights
- get_metric_name
- plot_cumulative_weights
- plot_distributions
- plot_influence_2d
- plot_influence_comparison
- plot_influence_ranking
- plot_performance_2d
- plot_performance_comparison
- plot_performance_ranking
- plot_weight_distribution
- rank_by_influence
- rank_by_performance
 
 
- class RegressionExplainer (alpha=0.05, n_taus=41, n_samples=1, sample_frac=0.8, conf_level=0.05, max_iterations=15, tol=0.0001, n_jobs=1, memoize=False, verbose=True)
- 
  
  Explains the influence of features on model predictions and performance. Parameters- alpha:- float
- A floatbetween0and0.5which indicates by how close theCacheExplainershould look at extreme values of a distribution. The closer to zero, the more so extreme values will be accounted for. The default is0.05which means that all values beyond the 5th and 95th quantiles are ignored.
- n_taus:- int
- The number of τ values to consider. The results will be more fine-grained the
higher this value is. However the computation time increases linearly with n_taus. The default is41and corresponds to each τ being separated by it's neighbors by0.05.
- n_samples:- int
- The number of samples to use for the confidence interval.
If 1, the default, no confidence interval is computed.
- sample_frac:- float
- The proportion of lines in the dataset sampled to
generate the samples for the confidence interval. If n_samplesis1, no confidence interval is computed and the whole dataset is used. Default is0.8.
- conf_level:- float
- A floatbetween0and0.5which indicates the quantile used for the confidence interval. Default is0.05, which means that the confidence interval contains the data between the 5th and 95th quantiles.
- max_iterations:- int
- The maximum number of iterations used when applying the Newton step
of the optimization procedure. Default is 5.
- tol:- float
- The bottom threshold for the gradient of the optimization
procedure. When reached, the procedure stops. Otherwise, a warning
is raised about the fact that the optimization did not converge.
Default is 1e-4.
- n_jobs:- int
- The number of jobs to use for parallel computations. See
joblib.Parallel(). Default is-1.
- memoize:- bool
- Indicates whether or not memoization should be used or not. If True, then intermediate results will be stored in order to avoid recomputing results that can be reused by successively called methods. For example, if you callplot_influencefollowed byplot_influence_rankingandmemoizeisTrue, then the intermediate results required byplot_influencewill be reused forplot_influence_ranking. Memoization is turned off by default because it can lead to unexpected behavior depending on your usage.
- verbose:- bool
- Whether or not to show progress bars during
computations. Default is True.
 Expand source codeclass RegressionExplainer(CacheExplainer): passAncestorsInherited members- CacheExplainer:- CAT_COL_SEP
- compare_influence
- compare_performance
- compute_distributions
- compute_weights
- explain_influence
- explain_performance
- get_metric_name
- plot_cumulative_weights
- plot_distributions
- plot_influence
- plot_influence_2d
- plot_influence_comparison
- plot_influence_ranking
- plot_performance
- plot_performance_2d
- plot_performance_comparison
- plot_performance_ranking
- plot_weight_distribution
- rank_by_influence
- rank_by_performance