Ethik AI

Module ethik.classification_explainer

Expand source code
import colorlover as cl
import pandas as pd
import plotly.graph_objs as go
from plotly.subplots import make_subplots

from .cache_explainer import CacheExplainer
from .utils import set_fig_size, to_pandas

__all__ = ["ClassificationExplainer"]


class ClassificationExplainer(CacheExplainer):
    def plot_influence(
        self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None
    ):
        """Plot the influence for the features in `X_test`.

        See `ethik.cache_explainer.CacheExplainer.plot_influence()`.
        """
        if yrange is None:
            yrange = [0, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))

        if len(y_pred.columns) == 1:
            return super().plot_influence(
                X_test=X_test,
                y_pred=y_pred.iloc[:, 0],
                colors=colors,
                yrange=yrange,
                size=size,
                constraints=constraints,
            )

        if colors is None:
            features = X_test.columns
            #  Skip the lightest color as it is too light
            scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
            colors = {feat: scale[i] for i, feat in enumerate(features)}

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_influence(
                    X_test=X_test,
                    y_pred=y_pred[label],
                    colors=colors,
                    yrange=yrange,
                    constraints=constraints,
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=f"Average {label}")})
            for trace in plot["data"]:
                trace["showlegend"] = ilabel == 0 and trace["showlegend"]
                trace["legendgroup"] = trace["name"]
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            nticks=5,
            showline=True,
            showgrid=True,
            zeroline=False,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            range=yrange,
            showline=True,
            showgrid=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_layout(
            {
                f"xaxis{len(labels)}": dict(
                    title="tau"
                    if len(X_test.columns) > 1
                    else f"Average {X_test.columns[0]}"
                )
            }
        )
        set_fig_size(fig, size)
        return fig

    def plot_influence_2d(
        self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None
    ):
        """Plot the combined influence for the features in `X_test`.

        See `ethik.cache_explainer.CacheExplainer.plot_influence_2d()`.
        """
        if z_range is None:
            z_range = [0, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))

        if len(y_pred.columns) == 1:
            return super().plot_influence_2d(
                X_test=X_test,
                y_pred=y_pred,
                z_range=z_range,
                colorscale=colorscale,
                size=size,
                constraints=constraints,
            )

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_influence_2d(
                    X_test=X_test,
                    y_pred=y_pred[label],
                    z_range=z_range,
                    colorscale=colorscale,
                    size=size,
                    constraints=constraints,
                )
            )

        fig = make_subplots(
            rows=len(labels),
            cols=1,
            shared_xaxes=True,
            subplot_titles=[p["data"][0]["colorbar"]["title"].text for p in plots],
        )
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=plot.layout.yaxis.title)})
            heatmap, ds_mean = plot["data"]
            heatmap["showscale"] = ilabel == 0
            heatmap["colorbar"]["title"] = ""
            heatmap["hoverinfo"] = "x+y+z"
            fig.add_trace(heatmap, row=ilabel + 1, col=1)
            fig.add_trace(ds_mean, row=ilabel + 1, col=1)

        fig.update_xaxes(
            showline=True,
            showgrid=True,
            zeroline=False,
            mirror=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            showline=True,
            showgrid=True,
            mirror=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_layout(
            {
                f"xaxis{len(labels)}": dict(title=plots[0].layout.xaxis.title),
                "title": plots[0].layout.title,
            }
        )
        set_fig_size(fig, size)
        return fig

    def plot_distributions(
        self,
        feature_values,
        y_pred=None,
        bins=None,
        show_hist=False,
        show_curve=True,
        targets=None,
        colors=None,
        dataset_color="black",
        size=None,
    ):
        """Plot the stressed distribution of `feature_values` or `y_pred` if specified
        for each mean of `feature_values` in `targets`.

        See `ethik.base_explainer.BaseExplainer.plot_distributions()`.
        """
        if y_pred is None:
            return super().plot_distributions(
                feature_values=feature_values,
                bins=bins,
                show_hist=show_hist,
                show_curve=show_curve,
                targets=targets,
                colors=colors,
                dataset_color=dataset_color,
                size=size,
            )

        y_pred = pd.DataFrame(to_pandas(y_pred))
        if len(y_pred.columns) == 1:
            return super().plot_distributions(
                feature_values=feature_values,
                y_pred=y_pred.iloc[:, 0],
                bins=bins,
                show_hist=show_hist,
                show_curve=show_curve,
                targets=targets,
                colors=colors,
                dataset_color=dataset_color,
                size=size,
            )

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_distributions(
                    feature_values=feature_values,
                    y_pred=y_pred[label],
                    bins=bins,
                    show_hist=show_hist,
                    show_curve=show_curve,
                    targets=targets,
                    colors=colors,
                    dataset_color=dataset_color,
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout(
                {
                    f"xaxis{ilabel+1}": dict(title=label),
                    f"yaxis{ilabel+1}": dict(title=f"Probability density"),
                }
            )
            for itrace, trace in enumerate(plot["data"]):
                trace["legendgroup"] = itrace
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            showline=True,
            showgrid=True,
            zeroline=False,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            showline=True, showgrid=True, linecolor="black", gridcolor="#eee"
        )
        set_fig_size(fig, size)
        return fig

    def plot_influence_comparison(
        self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None
    ):
        """Plot the influence of features in `X_test` on `y_pred` for the
        individual `compared` compared to `reference`. Basically, we look at how
        the model would behave if the average individual were `compared` and take
        the difference with what the output would be if the average were `reference`.

        See `ethik.base_explainer.BaseExplainer.plot_influence_comparison()`.
        """
        if yrange is None:
            yrange = [-1, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))
        features = X_test.columns
        labels = y_pred.columns

        if len(labels) == 1:
            return super().plot_influence_comparison(
                X_test,
                y_pred.iloc[:, 0],
                reference,
                compared,
                colors=colors,
                yrange=yrange,
                size=size,
            )

        if colors is None:
            #  Skip the lightest color as it is too light
            scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
            colors = {feat: scale[i] for i, feat in enumerate(features)}

        plots = []
        for label in labels:
            plots.append(
                super().plot_influence_comparison(
                    X_test, y_pred[label], reference, compared, colors=colors
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        title = None
        shapes = []
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=label)})
            for trace in plot["data"]:
                shapes.append(
                    go.layout.Shape(
                        type="line",
                        x0=0,
                        y0=-0.5,
                        x1=0,
                        y1=len(features) - 0.5,
                        yref=f"y{ilabel+1}",
                        line=dict(color="black", width=1),
                    )
                )
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            range=yrange,
            showline=True,
            linecolor="black",
            linewidth=1,
            zeroline=False,
            showgrid=True,
            gridcolor="#eee",
            side="top",
            fixedrange=True,
            showticklabels=True,
        )
        fig.update_layout(
            showlegend=False,
            xaxis1=dict(title=plots[0].layout.xaxis.title),
            shapes=shapes,
        )
        set_fig_size(
            fig, size, width=500, height=100 + 60 * len(features) + 30 * len(labels)
        )
        return fig

Classes

class ClassificationExplainer (alpha=0.05, n_taus=41, n_samples=1, sample_frac=0.8, conf_level=0.05, max_iterations=15, tol=0.0001, n_jobs=1, memoize=False, verbose=True)

Explains the influence of features on model predictions and performance.

Parameters

alpha : float
A float between 0 and 0.5 which indicates by how close the CacheExplainer should look at extreme values of a distribution. The closer to zero, the more so extreme values will be accounted for. The default is 0.05 which means that all values beyond the 5th and 95th quantiles are ignored.
n_taus : int
The number of τ values to consider. The results will be more fine-grained the higher this value is. However the computation time increases linearly with n_taus. The default is 41 and corresponds to each τ being separated by it's neighbors by 0.05.
n_samples : int
The number of samples to use for the confidence interval. If 1, the default, no confidence interval is computed.
sample_frac : float
The proportion of lines in the dataset sampled to generate the samples for the confidence interval. If n_samples is 1, no confidence interval is computed and the whole dataset is used. Default is 0.8.
conf_level : float
A float between 0 and 0.5 which indicates the quantile used for the confidence interval. Default is 0.05, which means that the confidence interval contains the data between the 5th and 95th quantiles.
max_iterations : int
The maximum number of iterations used when applying the Newton step of the optimization procedure. Default is 5.
tol : float
The bottom threshold for the gradient of the optimization procedure. When reached, the procedure stops. Otherwise, a warning is raised about the fact that the optimization did not converge. Default is 1e-4.
n_jobs : int
The number of jobs to use for parallel computations. See joblib.Parallel(). Default is -1.
memoize : bool
Indicates whether or not memoization should be used or not. If True, then intermediate results will be stored in order to avoid recomputing results that can be reused by successively called methods. For example, if you call plot_influence followed by plot_influence_ranking and memoize is True, then the intermediate results required by plot_influence will be reused for plot_influence_ranking. Memoization is turned off by default because it can lead to unexpected behavior depending on your usage.
verbose : bool
Whether or not to show progress bars during computations. Default is True.
Expand source code
class ClassificationExplainer(CacheExplainer):
    def plot_influence(
        self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None
    ):
        """Plot the influence for the features in `X_test`.

        See `ethik.cache_explainer.CacheExplainer.plot_influence()`.
        """
        if yrange is None:
            yrange = [0, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))

        if len(y_pred.columns) == 1:
            return super().plot_influence(
                X_test=X_test,
                y_pred=y_pred.iloc[:, 0],
                colors=colors,
                yrange=yrange,
                size=size,
                constraints=constraints,
            )

        if colors is None:
            features = X_test.columns
            #  Skip the lightest color as it is too light
            scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
            colors = {feat: scale[i] for i, feat in enumerate(features)}

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_influence(
                    X_test=X_test,
                    y_pred=y_pred[label],
                    colors=colors,
                    yrange=yrange,
                    constraints=constraints,
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=f"Average {label}")})
            for trace in plot["data"]:
                trace["showlegend"] = ilabel == 0 and trace["showlegend"]
                trace["legendgroup"] = trace["name"]
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            nticks=5,
            showline=True,
            showgrid=True,
            zeroline=False,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            range=yrange,
            showline=True,
            showgrid=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_layout(
            {
                f"xaxis{len(labels)}": dict(
                    title="tau"
                    if len(X_test.columns) > 1
                    else f"Average {X_test.columns[0]}"
                )
            }
        )
        set_fig_size(fig, size)
        return fig

    def plot_influence_2d(
        self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None
    ):
        """Plot the combined influence for the features in `X_test`.

        See `ethik.cache_explainer.CacheExplainer.plot_influence_2d()`.
        """
        if z_range is None:
            z_range = [0, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))

        if len(y_pred.columns) == 1:
            return super().plot_influence_2d(
                X_test=X_test,
                y_pred=y_pred,
                z_range=z_range,
                colorscale=colorscale,
                size=size,
                constraints=constraints,
            )

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_influence_2d(
                    X_test=X_test,
                    y_pred=y_pred[label],
                    z_range=z_range,
                    colorscale=colorscale,
                    size=size,
                    constraints=constraints,
                )
            )

        fig = make_subplots(
            rows=len(labels),
            cols=1,
            shared_xaxes=True,
            subplot_titles=[p["data"][0]["colorbar"]["title"].text for p in plots],
        )
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=plot.layout.yaxis.title)})
            heatmap, ds_mean = plot["data"]
            heatmap["showscale"] = ilabel == 0
            heatmap["colorbar"]["title"] = ""
            heatmap["hoverinfo"] = "x+y+z"
            fig.add_trace(heatmap, row=ilabel + 1, col=1)
            fig.add_trace(ds_mean, row=ilabel + 1, col=1)

        fig.update_xaxes(
            showline=True,
            showgrid=True,
            zeroline=False,
            mirror=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            showline=True,
            showgrid=True,
            mirror=True,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_layout(
            {
                f"xaxis{len(labels)}": dict(title=plots[0].layout.xaxis.title),
                "title": plots[0].layout.title,
            }
        )
        set_fig_size(fig, size)
        return fig

    def plot_distributions(
        self,
        feature_values,
        y_pred=None,
        bins=None,
        show_hist=False,
        show_curve=True,
        targets=None,
        colors=None,
        dataset_color="black",
        size=None,
    ):
        """Plot the stressed distribution of `feature_values` or `y_pred` if specified
        for each mean of `feature_values` in `targets`.

        See `ethik.base_explainer.BaseExplainer.plot_distributions()`.
        """
        if y_pred is None:
            return super().plot_distributions(
                feature_values=feature_values,
                bins=bins,
                show_hist=show_hist,
                show_curve=show_curve,
                targets=targets,
                colors=colors,
                dataset_color=dataset_color,
                size=size,
            )

        y_pred = pd.DataFrame(to_pandas(y_pred))
        if len(y_pred.columns) == 1:
            return super().plot_distributions(
                feature_values=feature_values,
                y_pred=y_pred.iloc[:, 0],
                bins=bins,
                show_hist=show_hist,
                show_curve=show_curve,
                targets=targets,
                colors=colors,
                dataset_color=dataset_color,
                size=size,
            )

        labels = y_pred.columns
        plots = []
        for label in labels:
            plots.append(
                super().plot_distributions(
                    feature_values=feature_values,
                    y_pred=y_pred[label],
                    bins=bins,
                    show_hist=show_hist,
                    show_curve=show_curve,
                    targets=targets,
                    colors=colors,
                    dataset_color=dataset_color,
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout(
                {
                    f"xaxis{ilabel+1}": dict(title=label),
                    f"yaxis{ilabel+1}": dict(title=f"Probability density"),
                }
            )
            for itrace, trace in enumerate(plot["data"]):
                trace["legendgroup"] = itrace
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            showline=True,
            showgrid=True,
            zeroline=False,
            linecolor="black",
            gridcolor="#eee",
        )
        fig.update_yaxes(
            showline=True, showgrid=True, linecolor="black", gridcolor="#eee"
        )
        set_fig_size(fig, size)
        return fig

    def plot_influence_comparison(
        self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None
    ):
        """Plot the influence of features in `X_test` on `y_pred` for the
        individual `compared` compared to `reference`. Basically, we look at how
        the model would behave if the average individual were `compared` and take
        the difference with what the output would be if the average were `reference`.

        See `ethik.base_explainer.BaseExplainer.plot_influence_comparison()`.
        """
        if yrange is None:
            yrange = [-1, 1]

        X_test = pd.DataFrame(to_pandas(X_test))
        y_pred = pd.DataFrame(to_pandas(y_pred))
        features = X_test.columns
        labels = y_pred.columns

        if len(labels) == 1:
            return super().plot_influence_comparison(
                X_test,
                y_pred.iloc[:, 0],
                reference,
                compared,
                colors=colors,
                yrange=yrange,
                size=size,
            )

        if colors is None:
            #  Skip the lightest color as it is too light
            scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
            colors = {feat: scale[i] for i, feat in enumerate(features)}

        plots = []
        for label in labels:
            plots.append(
                super().plot_influence_comparison(
                    X_test, y_pred[label], reference, compared, colors=colors
                )
            )

        fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
        title = None
        shapes = []
        for ilabel, (label, plot) in enumerate(zip(labels, plots)):
            fig.update_layout({f"yaxis{ilabel+1}": dict(title=label)})
            for trace in plot["data"]:
                shapes.append(
                    go.layout.Shape(
                        type="line",
                        x0=0,
                        y0=-0.5,
                        x1=0,
                        y1=len(features) - 0.5,
                        yref=f"y{ilabel+1}",
                        line=dict(color="black", width=1),
                    )
                )
                fig.add_trace(trace, row=ilabel + 1, col=1)

        fig.update_xaxes(
            range=yrange,
            showline=True,
            linecolor="black",
            linewidth=1,
            zeroline=False,
            showgrid=True,
            gridcolor="#eee",
            side="top",
            fixedrange=True,
            showticklabels=True,
        )
        fig.update_layout(
            showlegend=False,
            xaxis1=dict(title=plots[0].layout.xaxis.title),
            shapes=shapes,
        )
        set_fig_size(
            fig, size, width=500, height=100 + 60 * len(features) + 30 * len(labels)
        )
        return fig

Ancestors

Methods

def plot_distributions(self, feature_values, y_pred=None, bins=None, show_hist=False, show_curve=True, targets=None, colors=None, dataset_color='black', size=None)

Plot the stressed distribution of feature_values or y_pred if specified for each mean of feature_values in targets.

See BaseExplainer.plot_distributions().

Expand source code
def plot_distributions(
    self,
    feature_values,
    y_pred=None,
    bins=None,
    show_hist=False,
    show_curve=True,
    targets=None,
    colors=None,
    dataset_color="black",
    size=None,
):
    """Plot the stressed distribution of `feature_values` or `y_pred` if specified
    for each mean of `feature_values` in `targets`.

    See `ethik.base_explainer.BaseExplainer.plot_distributions()`.
    """
    if y_pred is None:
        return super().plot_distributions(
            feature_values=feature_values,
            bins=bins,
            show_hist=show_hist,
            show_curve=show_curve,
            targets=targets,
            colors=colors,
            dataset_color=dataset_color,
            size=size,
        )

    y_pred = pd.DataFrame(to_pandas(y_pred))
    if len(y_pred.columns) == 1:
        return super().plot_distributions(
            feature_values=feature_values,
            y_pred=y_pred.iloc[:, 0],
            bins=bins,
            show_hist=show_hist,
            show_curve=show_curve,
            targets=targets,
            colors=colors,
            dataset_color=dataset_color,
            size=size,
        )

    labels = y_pred.columns
    plots = []
    for label in labels:
        plots.append(
            super().plot_distributions(
                feature_values=feature_values,
                y_pred=y_pred[label],
                bins=bins,
                show_hist=show_hist,
                show_curve=show_curve,
                targets=targets,
                colors=colors,
                dataset_color=dataset_color,
            )
        )

    fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
    for ilabel, (label, plot) in enumerate(zip(labels, plots)):
        fig.update_layout(
            {
                f"xaxis{ilabel+1}": dict(title=label),
                f"yaxis{ilabel+1}": dict(title=f"Probability density"),
            }
        )
        for itrace, trace in enumerate(plot["data"]):
            trace["legendgroup"] = itrace
            fig.add_trace(trace, row=ilabel + 1, col=1)

    fig.update_xaxes(
        showline=True,
        showgrid=True,
        zeroline=False,
        linecolor="black",
        gridcolor="#eee",
    )
    fig.update_yaxes(
        showline=True, showgrid=True, linecolor="black", gridcolor="#eee"
    )
    set_fig_size(fig, size)
    return fig
def plot_influence(self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None)

Plot the influence for the features in X_test.

See CacheExplainer.plot_influence().

Expand source code
def plot_influence(
    self, X_test, y_pred, colors=None, yrange=None, size=None, constraints=None
):
    """Plot the influence for the features in `X_test`.

    See `ethik.cache_explainer.CacheExplainer.plot_influence()`.
    """
    if yrange is None:
        yrange = [0, 1]

    X_test = pd.DataFrame(to_pandas(X_test))
    y_pred = pd.DataFrame(to_pandas(y_pred))

    if len(y_pred.columns) == 1:
        return super().plot_influence(
            X_test=X_test,
            y_pred=y_pred.iloc[:, 0],
            colors=colors,
            yrange=yrange,
            size=size,
            constraints=constraints,
        )

    if colors is None:
        features = X_test.columns
        #  Skip the lightest color as it is too light
        scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
        colors = {feat: scale[i] for i, feat in enumerate(features)}

    labels = y_pred.columns
    plots = []
    for label in labels:
        plots.append(
            super().plot_influence(
                X_test=X_test,
                y_pred=y_pred[label],
                colors=colors,
                yrange=yrange,
                constraints=constraints,
            )
        )

    fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
    for ilabel, (label, plot) in enumerate(zip(labels, plots)):
        fig.update_layout({f"yaxis{ilabel+1}": dict(title=f"Average {label}")})
        for trace in plot["data"]:
            trace["showlegend"] = ilabel == 0 and trace["showlegend"]
            trace["legendgroup"] = trace["name"]
            fig.add_trace(trace, row=ilabel + 1, col=1)

    fig.update_xaxes(
        nticks=5,
        showline=True,
        showgrid=True,
        zeroline=False,
        linecolor="black",
        gridcolor="#eee",
    )
    fig.update_yaxes(
        range=yrange,
        showline=True,
        showgrid=True,
        linecolor="black",
        gridcolor="#eee",
    )
    fig.update_layout(
        {
            f"xaxis{len(labels)}": dict(
                title="tau"
                if len(X_test.columns) > 1
                else f"Average {X_test.columns[0]}"
            )
        }
    )
    set_fig_size(fig, size)
    return fig
def plot_influence_2d(self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None)

Plot the combined influence for the features in X_test.

See CacheExplainer.plot_influence_2d().

Expand source code
def plot_influence_2d(
    self, X_test, y_pred, z_range=None, colorscale=None, size=None, constraints=None
):
    """Plot the combined influence for the features in `X_test`.

    See `ethik.cache_explainer.CacheExplainer.plot_influence_2d()`.
    """
    if z_range is None:
        z_range = [0, 1]

    X_test = pd.DataFrame(to_pandas(X_test))
    y_pred = pd.DataFrame(to_pandas(y_pred))

    if len(y_pred.columns) == 1:
        return super().plot_influence_2d(
            X_test=X_test,
            y_pred=y_pred,
            z_range=z_range,
            colorscale=colorscale,
            size=size,
            constraints=constraints,
        )

    labels = y_pred.columns
    plots = []
    for label in labels:
        plots.append(
            super().plot_influence_2d(
                X_test=X_test,
                y_pred=y_pred[label],
                z_range=z_range,
                colorscale=colorscale,
                size=size,
                constraints=constraints,
            )
        )

    fig = make_subplots(
        rows=len(labels),
        cols=1,
        shared_xaxes=True,
        subplot_titles=[p["data"][0]["colorbar"]["title"].text for p in plots],
    )
    for ilabel, (label, plot) in enumerate(zip(labels, plots)):
        fig.update_layout({f"yaxis{ilabel+1}": dict(title=plot.layout.yaxis.title)})
        heatmap, ds_mean = plot["data"]
        heatmap["showscale"] = ilabel == 0
        heatmap["colorbar"]["title"] = ""
        heatmap["hoverinfo"] = "x+y+z"
        fig.add_trace(heatmap, row=ilabel + 1, col=1)
        fig.add_trace(ds_mean, row=ilabel + 1, col=1)

    fig.update_xaxes(
        showline=True,
        showgrid=True,
        zeroline=False,
        mirror=True,
        linecolor="black",
        gridcolor="#eee",
    )
    fig.update_yaxes(
        showline=True,
        showgrid=True,
        mirror=True,
        linecolor="black",
        gridcolor="#eee",
    )
    fig.update_layout(
        {
            f"xaxis{len(labels)}": dict(title=plots[0].layout.xaxis.title),
            "title": plots[0].layout.title,
        }
    )
    set_fig_size(fig, size)
    return fig
def plot_influence_comparison(self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None)

Plot the influence of features in X_test on y_pred for the individual compared compared to reference. Basically, we look at how the model would behave if the average individual were compared and take the difference with what the output would be if the average were reference.

See BaseExplainer.plot_influence_comparison().

Expand source code
def plot_influence_comparison(
    self, X_test, y_pred, reference, compared, colors=None, yrange=None, size=None
):
    """Plot the influence of features in `X_test` on `y_pred` for the
    individual `compared` compared to `reference`. Basically, we look at how
    the model would behave if the average individual were `compared` and take
    the difference with what the output would be if the average were `reference`.

    See `ethik.base_explainer.BaseExplainer.plot_influence_comparison()`.
    """
    if yrange is None:
        yrange = [-1, 1]

    X_test = pd.DataFrame(to_pandas(X_test))
    y_pred = pd.DataFrame(to_pandas(y_pred))
    features = X_test.columns
    labels = y_pred.columns

    if len(labels) == 1:
        return super().plot_influence_comparison(
            X_test,
            y_pred.iloc[:, 0],
            reference,
            compared,
            colors=colors,
            yrange=yrange,
            size=size,
        )

    if colors is None:
        #  Skip the lightest color as it is too light
        scale = cl.interp(cl.scales["10"]["qual"]["Paired"], len(features) + 1)[1:]
        colors = {feat: scale[i] for i, feat in enumerate(features)}

    plots = []
    for label in labels:
        plots.append(
            super().plot_influence_comparison(
                X_test, y_pred[label], reference, compared, colors=colors
            )
        )

    fig = make_subplots(rows=len(labels), cols=1, shared_xaxes=True)
    title = None
    shapes = []
    for ilabel, (label, plot) in enumerate(zip(labels, plots)):
        fig.update_layout({f"yaxis{ilabel+1}": dict(title=label)})
        for trace in plot["data"]:
            shapes.append(
                go.layout.Shape(
                    type="line",
                    x0=0,
                    y0=-0.5,
                    x1=0,
                    y1=len(features) - 0.5,
                    yref=f"y{ilabel+1}",
                    line=dict(color="black", width=1),
                )
            )
            fig.add_trace(trace, row=ilabel + 1, col=1)

    fig.update_xaxes(
        range=yrange,
        showline=True,
        linecolor="black",
        linewidth=1,
        zeroline=False,
        showgrid=True,
        gridcolor="#eee",
        side="top",
        fixedrange=True,
        showticklabels=True,
    )
    fig.update_layout(
        showlegend=False,
        xaxis1=dict(title=plots[0].layout.xaxis.title),
        shapes=shapes,
    )
    set_fig_size(
        fig, size, width=500, height=100 + 60 * len(features) + 30 * len(labels)
    )
    return fig

Inherited members